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Unit – 2 Measures of central tendency 

 

Definition of Measures of Central Tendency 

 A measure of central tendency is a measure that tells us where the middle of a bunch 

of data lies. 

 The three most common measures of central tendency are the mean, the median, and 

the mode.  

More about Measures of Central Tendency  

 Mean: Mean is the most common measure of central tendency. It is simply the sum of 

the numbers divided by the number of numbers in a set of data. This is also known as 

average. 

 Median: Median is the number present in the middle when the numbers in a set of 

data are arranged in ascending or descending order. If the number of numbers in a 

data set is even, then the median is the mean of the two middle numbers. 

 Mode: Mode is the value that occurs most frequently in a set of data.  

Examples of Measures of Central Tendency  

 For the data 1, 2, 3, 4, 5, 5, 6, 7, 8 the measures of central tendency are  

Mean   =   

 

Median  =  5 

Mode   =  5  

Solved Example on Measures of Central Tendency 

Find the measures of central tendency for the data set 3, 7, 9, 4, 5, 4, 6, 7, and 9. 

 

Choices:  
 

A. Mean = 6, median = 6 and modes are 4, 7 and 9 

B. Mean = 6, median = 6 and mode is 4 

C. Mean = 6, median = 6 and modes are 4 and 9 

D. Mean = 6, median = 9 and modes are 4, 7 and 9 

Correct Answer: A 
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Solution:  
Step 1: Mean, median and mode of a data set are the measures of central tendency. 

 

Step 2: Mean of the data set =                 [Formula.] 

 

Step 3:                                 [Substitute the values.] 

 

Step 4:                      [Add the data values in the numerator and divide.] 

 

Step 5: The data set in the ascending order is 3, 4, 4, 5, 6, 7, 7, 9, and 9. So, Median of the set 

is 6.      [Median is the middle data value of the ordered set.] 

Step 6: Mode is/are the data value(s) that appear most often in the data set. So, the modes of 

the data set are 4, 7 and 9. 

Step 7: So, the measures of central tendency of the given set of data are mean = 6, median = 

6 and modes are 4, 7, and 9. 

================================================================= 

Mean 

Definition of Mean 

 Mean of a set of numbers is the sum of the numbers divided by the number of items in 

the list. Mean of a set of n numbers a1, a2, a3, ..., an is given by 

.  

More about Mean 

 Mean can also be called as average or arithmetic mean.  

Example of Mean 

 In order to find the mean of 4, 5, 6, 3, and 7, first we have to add the numbers and 

then divide the sum by the number of items.  

4 + 5 + 6 + 3 + 7 = 25 i.e. the sum of the numbers is 25. 

 

 Mean = = = = 5 

 

 So, the mean of the data set 4, 5, 6, 3, and 7 is 5.  
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Solved Example on Mean 

Find the mean weight of the data set shown. 

5 lb, 48 lb, 31 lb, 31 lb, 41 lb, 20 lb, 19 lb, 5 lb 

Choices: 

A. 27 lb 

B. 25 lb 

C. 26 lb 

D. 24 lb 

Correct Answer: B 

Solution:  

Step 1: Mean weight =  

Step 2: Sum of the weights = 5 + 48 + 31 + 31 + 41 + 20 + 19 + 5 

Step 3: = 200 lb [Add the weights.] 

Step 4: Number of weights listed = 8 

Step 5: Mean weight = = 25 lb [Substitute and simplify.] 

Step 6: So, the mean weight of the data set is 25 lb. 

================================================================== 

Median 

Definition of Median 

 Median is the middle data value of an ordered data set.  

More about Median 

 If there are two middle values, then the median is the mean of the two numbers. 

 There will be two middle values when the number of values in the data set is even.  

Examples of Median 

 12, 23, 8, 46, 5, 42, 19  
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The median in the above data set is 19. 

median for the data set 2, 4, 7, 9, 3 is 4. 

2, 3, 4, 7, and 9 is the ascending order of the data set 2, 4, 7, 9, 3. The middle number in the 

ordered data set is 4.  

 Let us find the median of a data set with even number of items in it, e.g. 33, 30, 42, 22, 18, 

and 31. 

Arranging the above data set in ascending order, we find 18, 22, 30, 31, 33, and 42. 

The middle numbers from the above data set are 30 and 31. As there are two middle numbers 

we have to find the mean of those numbers. 

= = 30.5. So, 30.5 is the median (middle value) of the data set 33, 30, 42, 22, 18, 

and 31.  

Solved Example on Median 

The given data shows the number of burgers sold at a bakery in the last 14 weeks. 

17, 13, 18, 17, 13, 16, 18, 19, 17, 13, 16, 18, 20, 19 

Find the median number of burgers sold. 

Choices:  
A. 18.5 

B. 17 

C. 18 

D. 17.5 

Correct Answer: B 

Solution:  
Step 1: 13, 13, 13, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 20 [Arrange the data in increasing 

order.] 

Step 2: Number of observations, n = 14. 

Step 3: n is an even number. 

Step 4: Median is the mean of the 7th and 8th observations in the ordered list. 

Step 5: Median = = 17 

Step 6: So, the median number of burgers sold is 17. 

================================================================== 
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Mode 

Definition of Mode 

 Mode is a number that occurs most frequently in the data set.  

More about Mode 

 The data set with more than one mode is called Multimodal.  

Examples of Mode 

 

 In the given line plot, most number of cross (4) are shown against 20. So 20 is the 

mode of the given line plot. 

 The mode of the set M, S, R, S, S, M, M, R, M, R is M, as M is occurred more 

frequently than S and R. 

 60, 55, 59, 56, 61, 62, 62, 62, 57, 61  

60 in the data set occur only once. 

55 in the data set occur only once. 

59 in the data set occur only once. 

56 in the data set occur only once. 

61 in the data set occur twice. 

62 in the data set occur thrice. 

57 in the data set occur only once. 

So, the mode for the above data set is 62 as it occurred most frequently.  

Solved Example on Mode 

The data shown below are the weights (in pounds) of different vegetables that Ashley bought. 

16, 11, 14, 16, 7, 16, 14, 11, 16. 

What is the mode of the data? 

Choices: 
A. 11 

B. 7 

C. 16 

D. 14 

Correct Answer: C 

Solution:  
Step 1: The number that occurs most frequently in a data set is called the mode. 

Step 2: 16, 11, 14, 16, 7, 16, 14, 11, 16 [Original scores.] 

Step 3: Since the number 16 appears four times, the mode of the data set is 16. 

------------------------------------------------------------------------------------------------------------- 
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 Measures of variability 

Definition of Measure of Variation 

 Measure of variation is a measure that describes how spread out or scattered a set of 

data. It is also known as measures of dispersion or measures of spread.  

Examples of Measure of Variation 

 There are three measures of variation:  

The range, the variance, and the standard deviation.  

Solved Example on Measure of Variation 

The heights in cm of ten students are: 157, 152, 165, 151, 160, 156, 155, 162, 158, 163. Find 

the range of the data. 

 

Choices: 
 

A. 10 

B. 13 

C. 15 

D. 14 

Correct Answer: D 

 

Solution: 
Step 1: Maximum height = 165. 

Step 2: Minimum height = 151. 

Step 3: Range = 165 - 151 = 14. [Range = maximum height - minimum height.] 

================================================================== 

 

Range 

The range is the simplest measure of variation to find. It is simply the highest value minus the 

lowest value.  

   RANGE = MAXIMUM - MINIMUM 

Since the range only uses the largest and smallest values, it is greatly affected by extreme 

values, that is - it is not resistant to change.  

================================================================= 
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Variance 

Definition of Variance  

 Variance is a statistical measure that tells us how measured data vary from the 

average value of the set of data.  

 In other words, variance is the mean of the squares of the deviations from the 

arithmetic mean of a data set.  

More about Variance  

 Variance is the square of the standard deviation.  

 The formula for variance   

 

Solved Example on Variance  

Find the variance of the data set {1, 2, 3, 4, 10}.   

Choices:  

A. 10  

B.  9  

C.  8  

D.  7  

Correct answer: A  

Solution:  

Step 1:  The mean of the data set {1, 2, 3, 4, 10} is .      [Use the 

formula for mean.]                           

Step 2: The standard deviation of the data set is  

 

                [Use the formula for mean.]         

 

Step 3:    

Step 4: The variance of the data set is .  [Substitute .]  

 

---------------------------------------------------------------------------------------------------------------- 
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Standard Deviation 

 Standard deviation is a widely used measure of variability or diversity used in 

statistics and probability theory. It shows how much variation or "dispersion" there is from 

the average (mean, or expected value). A low standard deviation indicates that the data points 

tend to be very close to the mean, whereas high standard deviation indicates that the data 

points are spread out over a large range of values. 

 The standard deviation of a statistical population, data set, or probability distribution 

is the square root of its variance. It is algebraically simpler though practically less robust than 

the average absolute deviation.
[1][2]

 A useful property of standard deviation is that, unlike 

variance, it is expressed in the same units as the data. 

 In addition to expressing the variability of a population, standard deviation is 

commonly used to measure confidence in statistical conclusions. For example, the margin of 

error in polling data is determined by calculating the expected standard deviation in the 

results if the same poll were to be conducted multiple times. The reported margin of error is 

typically about twice the standard deviation – the radius of a 95 percent confidence interval. 

In science, researchers commonly report the standard deviation of experimental data, and 

only effects that fall far outside the range of standard deviation are considered statistically 

significant – normal random error or variation in the measurements is in this way 

distinguished from causal variation. Standard deviation is also important in finance, where 

the standard deviation on the rate of return on an investment is a measure of the volatility of 

the investment. 

 When only a sample of data from a population is available, the population standard 

deviation can be estimated by a modified quantity called the sample standard deviation, 

explained below. 

Basic examples 

Consider a population consisting of the following eight values: 

 

These eight data points have the mean (average) of 5: 

 

To calculate the population standard deviation, first compute the difference of each data point 

from the mean, and square the result of each: 

 

Next compute the average of these values, and take the square root: 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Statistical_population
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Square_root
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Algebra
http://en.wikipedia.org/wiki/Robust_statistics
http://en.wikipedia.org/wiki/Average_absolute_deviation
http://en.wikipedia.org/wiki/Standard_deviation#cite_note-0
http://en.wikipedia.org/wiki/Standard_deviation#cite_note-0
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Margin_of_error
http://en.wikipedia.org/wiki/Margin_of_error
http://en.wikipedia.org/wiki/Opinion_poll
http://en.wikipedia.org/wiki/Confidence_interval
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Statistically_significant
http://en.wikipedia.org/wiki/Statistically_significant
http://en.wikipedia.org/wiki/Finance
http://en.wikipedia.org/wiki/Rate_of_return
http://en.wikipedia.org/wiki/Investment
http://en.wikipedia.org/wiki/Volatility_%28finance%29
http://en.wikipedia.org/wiki/Statistical_sample
http://en.wikipedia.org/wiki/Standard_deviation#Estimation
http://en.wikipedia.org/wiki/Statistical_population
http://en.wikipedia.org/wiki/Square_%28algebra%29
http://en.wikipedia.org/wiki/Square_root
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 This quantity is the population standard deviation; it is equal to the square root of 

the variance. The formula is valid only if the eight values we began with form the complete 

population. If they instead were a random sample, drawn from some larger, "parent" 

population, then we should have used 7 (which is n − 1) instead of 8 (which is n) in the 

denominator of the last formula, and then the quantity thus obtained would have been called 

the sample standard deviation. See the section Estimation below for more details. 

 A slightly more complicated real life example, the average height for adult men in the 

United States is about 70", with a standard deviation of around 3". This means that most men 

(about 68%, assuming a normal distribution) have a height within 3" of the mean (67"–73") 

— one standard deviation — and almost all men (about 95%) have a height within 6" of the 

mean (64"–76") — two standard deviations. If the standard deviation were zero, then all men 

would be exactly 70" tall. If the standard deviation were 20", then men would have much 

more variable heights, with a typical range of about 50"–90". Three standard deviations 

account for 99.7% of the sample population being studied, assuming the distribution is 

normal (bell-shaped). 

Definition of population values 

Let X be a random variable with mean value μ: 

 

Here the operator E denotes the average or expected value of X. Then the standard 

deviation of X is the quantity 

 

 That is, the standard deviation σ (sigma) is the square root of the variance of X, i.e., it 

is the square root of the average value of (X − μ)
2
. 

 The standard deviation of a (univariate) probability distribution is the same as that of 

a random variable having that distribution. Not all random variables have a standard 

deviation, since these expected values need not exist. For example, the standard deviation of 

a random variable that follows a Cauchy distribution is undefined because its expected value 

μ is undefined. 

Discrete random variable 

In the case where X takes random values from a finite data set x1, x2, …, xN, with each value 

having the same probability, the standard deviation is 

 

or, using summation notation, 

http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Standard_deviation#Estimation
http://en.wikipedia.org/wiki/Human_height#Average_height_around_the_world
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Sigma
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Univariate
http://en.wikipedia.org/wiki/Cauchy_distribution
http://en.wikipedia.org/wiki/Summation
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 If, instead of having equal probabilities, the values have different probabilities, let x1 

have probability p1, x2 have probability p2, ..., xN have probability pN. In this case, the 

standard deviation will be 

 

Continuous random variable 

The standard deviation of a continuous real-valued random variable X with probability 

density function p(x) is 

 

and where the integrals are definite integrals taken for x ranging over the set of possible 

values of the random variable X. 

 In the case of a parametric family of distributions, the standard deviation can be 

expressed in terms of the parameters. For example, in the case of the log-normal distribution 

with parameters μ and σ
2
, the standard deviation is [(exp(σ

2
) − 1)exp(2μ + σ

2
)]

1/2
. 

Estimation  

 One can find the standard deviation of an entire population in cases (such as 

standardized testing) where every member of a population is sampled. In cases where that 

cannot be done, the standard deviation σ is estimated by examining a random sample taken 

from the population. Some estimators are given below: 

With standard deviation of the sample 

 An estimator for σ sometimes used is the standard deviation of the sample, denoted 

by sN and defined as follows: 

 

 This estimator has a uniformly smaller mean squared error than the sample standard 

deviation (see below), and is the maximum-likelihood estimate when the population is 

normally distributed. But this estimator, when applied to a small or moderately sized sample, 

tends to be too low: it is a biased estimator. 

 The standard deviation of the sample is the same as the population standard deviation 

of a discrete random variable that can assume precisely the values from the data set, where 

the probability for each value is proportional to its multiplicity in the data set. 

http://en.wikipedia.org/wiki/Continuous_distribution
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Definite_integral
http://en.wikipedia.org/wiki/Parametric_model
http://en.wikipedia.org/wiki/Log-normal_distribution
http://en.wikipedia.org/wiki/Standardized_testing
http://en.wikipedia.org/wiki/Mean_squared_error
http://en.wikipedia.org/wiki/Maximum_likelihood
http://en.wikipedia.org/wiki/Biased_estimator
http://en.wikipedia.org/wiki/Discrete_random_variable
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With sample standard deviation 

The most common estimator for σ used is an adjusted version, the sample standard 

deviation, denoted by s and defined as follows: 

 

where are the observed values of the sample items and is the mean value of 

these observations. This correction (the use of N − 1 instead of N) is known as Bessel's 

correction. The reason for this correction is that s
2
 is an unbiased estimator for the variance σ

2
 

of the underlying population, if that variance exists and the sample values are drawn 

independently with replacement. However, s is not an unbiased estimator for the standard 

deviation σ; it tends to overestimate the population standard deviation. 

 The term standard deviation of the sample is used for the uncorrected estimator (using 

N) while the term sample standard deviation is used for the corrected estimator (using N − 1). 

The denominator N − 1 is the number of degrees of freedom in the vector of residuals, 

. 

Difference between standard deviation population vs Sample: 

 When all available values are used, it is called a population; when only a subset of 

available values is used, it is called a sample. 

Things to remember: 

σ is the population standard deviation which is usually unknown. 

s is the sample standard deviation which is an estimate of the unknown population 

standard deviation. 

The sum of squares is divided by 1 less than the sample size to account for the error in 

estimation from the sample standard deviation (called the degrees of freedom).
[3]

 

 

Standard error 

 The standard error is the standard deviation of the sampling distribution of a 

statistic.
[1]

 The term may also be used to refer to an estimate of that standard deviation, 

derived from a particular sample used to compute the estimate. 

 For example, the sample mean is the usual estimator of a population mean. However, 

different samples drawn from that same population would in general have different values of 

the sample mean. The standard error of the mean (i.e., of using the sample mean as a 

method of estimating the population mean) is the standard deviation of those sample means 

over all possible samples (of a given size) drawn from the population. Secondly, the standard 

error of the mean can refer to an estimate of that standard deviation, computed from the 

sample of data being analyzed at the time. 

http://en.wikipedia.org/wiki/Bessel%27s_correction
http://en.wikipedia.org/wiki/Bessel%27s_correction
http://en.wikipedia.org/wiki/Unbiased_estimator
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Degrees_of_freedom_%28statistics%29
http://en.wikipedia.org/wiki/Residual_%28statistics%29
http://en.wikipedia.org/wiki/Standard_deviation#cite_note-2
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Sampling_distribution
http://en.wikipedia.org/wiki/Statistic
http://en.wikipedia.org/wiki/Standard_error_%28statistics%29#cite_note-0
http://en.wikipedia.org/wiki/Sample_mean
http://en.wikipedia.org/wiki/Population_%28statistics%29
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 A way for remembering the term standard error is that, as long as the estimator is 

unbiased, the standard deviation of the error (the difference between the estimate and the true 

value) is the same as the standard deviation of the estimates themselves; this is true since the 

standard deviation of the difference between the random variable and its expected value is 

equal to the standard deviation of a random variable itself. 

In practical applications, the true value of the standard deviation (of the error) is usually 

unknown. As a result, the term standard error is often used to refer to an estimate of this 

unknown quantity. In such cases it is important to be clear about what has been done and to 

attempt to take proper account of the fact that the standard error is only an estimate 

Range 

 The range is the length of the smallest interval which contains all the data. It is 

calculated by subtracting the smallest observation (sample minimum) from the greatest 

(sample maximum) and provides an indication of statistical dispersion. 

Absolute deviation 

 It is measured in the same units as the data. Since it only depends on two of the 

observations, it is a poor and weak measure of dispersion except when the sample size is 

large. 

 For a population, the range is greater than or equal to twice the standard deviation, 

with equality only for the coin toss (Bernoulli distribution with p = ½). 

The range, in the sense of the difference between the highest and lowest scores, is also called 

the crude range. When a new scale for measurement is developed, then a potential maximum 

or minimum will emanate from this scale. This is called the potential (crude) range. Of 

course this range should not be chosen too small, in order to avoid a ceiling effect. When the 

measurement is obtained, the resulting smallest or greatest observation, will provide the 

observed (crude) range. 

 The midrange point, i.e. the point halfway between the two extremes, is an indicator 

of the central tendency of the data. Again it is not particularly robust for small samples. 

 In statistics, the absolute deviation of an element of a data set is the absolute 

difference between that element and a given point. Typically the point from which the 

deviation is measured is a measure of central tendency, most often the median or sometimes 

the mean of the data set. 

Di = | xi − m(X) | 

where 

Di is the absolute deviation, 

xi is the data element 

and m(X) is the chosen measure of central tendency of the data set—sometimes the 

mean ( ), but most often the median. 

http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
http://en.wikipedia.org/wiki/Sample_minimum
http://en.wikipedia.org/wiki/Sample_maximum
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Coin_toss
http://en.wikipedia.org/wiki/Bernoulli_distribution
http://en.wikipedia.org/wiki/Ceiling_effect
http://en.wikipedia.org/wiki/Midrange
http://en.wikipedia.org/wiki/Central_tendency
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Absolute_difference
http://en.wikipedia.org/wiki/Absolute_difference
http://en.wikipedia.org/wiki/Central_tendency
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Central_tendency
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Median


13 
 

 

Measures of dispersion 

Several measures of statistical dispersion are defined in terms of the absolute deviation. 

Average absolute deviation 

 The average absolute deviation or simply average deviation of a data set is the 

average of the absolute deviations and is a summary statistic of statistical dispersion or 

variability. It is also called the mean absolute deviation, but this is easily confused with the 

median absolute deviation. 

The average absolute deviation of a set {x1, x2, ..., xn} is 

 

The choice of measure of central tendency, m(X), has a marked effect on the value of the 

average deviation. For example, for the data set {2, 2, 3, 4, 14}: 

Measure of central 

tendency m(X) 
Average absolute deviation 

Mean = 5 
 

Median = 3 
 

Mode = 2 
 

 The average absolute deviation from the median is less than or equal to the average 

absolute deviation from the mean. In fact, the average absolute deviation from the median is 

always less than or equal to the average absolute deviation from any other fixed number. 

 The average absolute deviation from the mean is less than or equal to the standard 

deviation; one way of proving this relies on Jensen's inequality. 

 For the normal or "Gaussian" distribution, the ratio of mean absolute deviation to 

standard deviation is . Thus if X is a normally distributed random 

variable with expected value 0 then 

 

In other words, for a Gaussian, mean absolute deviation is about 0.8 times the standard 

deviation. 

http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Average
http://en.wikipedia.org/wiki/Summary_statistics
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Median_absolute_deviation
http://en.wikipedia.org/wiki/Central_tendency
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Jensen%27s_inequality
http://en.wikipedia.org/wiki/Normal_distribution
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Mean absolute deviation 

 The mean absolute deviation (MAD), also referred to as the mean deviation, is the 

mean of the absolute deviations of a set of data about the data’s mean. In other words, it is the 

average distance of the data set from its mean during certain number of time periods. 

The equation for MAD is as follows: 

MAD = 1/n ∑(|ei|) , where ei = Fi - Di 

 This method forecast accuracy is very closely related to the mean squared error 

(MSE) method which is just the average squared error of the forecasts. Although these 

methods are very closely related MAD is more commonly used because it does not require 

squaring. 

The equation for MSE is as follows: 

MSE = 1/n Σ(ei
2
) , where ei = Fi - Di 

 Median absolute deviation (MAD) 

 The median absolute deviation is the median of the absolute deviation from the 

median. It is a robust estimator of dispersion. 

 For the example {2, 2, 3, 4, 14}: 3 is the median, so the absolute deviations from the 

median are {1, 1, 0, 1, 11} (reordered as {0, 1, 1, 1, 11}) with a median of 1, in this case 

unaffected by the value of the outlier 14, so the median absolute deviation (also called MAD) 

is 1. 

Maximum absolute deviation 

 The maximum absolute deviation about a point is the maximum of the absolute 

deviations of a sample from that point. It is realized by the sample maximum or sample 

minimum and cannot be less than half the range. 

================================================================== 

Coefficient of variation 
 

 In probability theory and statistics, the coefficient of variation (CV) is a normalized 

measure of dispersion of a probability distribution. It is also known as unitized risk or the 

variation coefficient. 

Definition 

The coefficient of variation (CV) is defined as the ratio of the standard deviation to the 

mean : 

 

http://en.wikipedia.org/wiki/Sample_maximum
http://en.wikipedia.org/wiki/Sample_minimum
http://en.wikipedia.org/wiki/Sample_minimum
http://en.wikipedia.org/wiki/Range_%28statistics%29
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Normalization_%28statistics%29
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Mean
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which is the inverse of the signal-to-noise ratio. The CV is defined only for non-zero mean 

and the absolute value is taken for the mean to ensure it is always positive. It is sometimes 

expressed as a percent, in which case the CV is multiplied by 100%. 

 The coefficient of variation should be computed only for data measured on a ratio 

scale. To demonstrate this using an example of a group of temperatures is analyzed, the 

standard deviation does not depend on whether the Kelvin or Celsius scale is used since an 

object that changes its temperature by 1 K also changes its temperature by 1° C. However the 

mean temperature of the data set would differ in each scale by an amount of 273 and thus the 

coefficient of variation would differ. So the coefficient of variation may not have any 

meaning for data on an interval scale.  

Comparison to standard deviation 

Advantages 

 The coefficient of variation is useful because the standard deviation of data must 

always be understood in the context of the mean of the data. The coefficient of variation is a 

dimensionless number. So for comparison between data sets with different units or widely 

different means, one should use the coefficient of variation instead of the standard deviation. 

Disadvantages 

 When the mean value is close to zero, the coefficient of variation will approach 

infinity and is hence sensitive to small changes in the mean. 

 Unlike the standard deviation, it cannot be used to construct confidence intervals for 

the mean. 

================================================================= 

Correlation and dependence 

 In statistics, dependence refers to any statistical relationship between two random 

variables or two sets of data. Correlation refers to any of a broad class of statistical 

relationships involving dependence. 

 Familiar examples of dependent phenomena include the correlation between the 

physical statures of parents and their offspring, and the correlation between the demand for a 

product and its price. Correlations are useful because they can indicate a predictive 

relationship that can be exploited in practice. For example, an electrical utility may produce 

less power on a mild day based on the correlation between electricity demand and weather. In 

this example there is a causal relationship, because extreme weather causes people to use 

more electricity for heating or cooling; however, statistical dependence is not sufficient to 

demonstrate the presence of such a causal relationship. 

 Formally, dependence refers to any situation in which random variables do not satisfy 

a mathematical condition of probabilistic independence. In loose usage, correlation can refer 

to any departure of two or more random variables from independence, but technically it refers 

to any of several more specialized types of relationship between mean values. There are 

several correlation coefficients, often denoted ρ or r, measuring the degree of correlation. 

The most common of these is the Pearson correlation coefficient, which is sensitive only to a 

linear relationship between two variables (which may exist even if one is a nonlinear function 
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of the other). Other correlation coefficients have been developed to be more robust than the 

Pearson correlation — that is, more sensitive to nonlinear relationships 

Karl Pearson's product-moment coefficient 

 The most familiar measure of dependence between two quantities is the Pearson 

product-moment correlation coefficient, or "Pearson's correlation." It is obtained by dividing 

the covariance of the two variables by the product of their standard deviations. Karl Pearson 

developed the coefficient from a similar but slightly different idea by Francis Galton.  

The population correlation coefficient ρX,Y between two random variables X and Y with 

expected values μX and μY and standard deviations σX and σY is defined as: 

 

where E is the expected value operator, cov means covariance, and, corr a widely used 

alternative notation for Pearson's correlation. 

 The Pearson correlation is defined only if both of the standard deviations are finite 

and both of them are nonzero. It is a corollary of the Cauchy–Schwarz inequality that the 

correlation cannot exceed 1 in absolute value. The correlation coefficient is symmetric: 

corr(X,Y) = corr(Y,X). 

 The Pearson correlation is +1 in the case of a perfect positive (increasing) linear 

relationship (correlation), −1 in the case of a perfect decreasing (negative) linear relationship 

(anticorrelation), and some value between −1 and 1 in all other cases, indicating the degree 

of linear dependence between the variables. As it approaches zero there is less of a 

relationship (closer to uncorrelated). The closer the coefficient is to either −1 or 1, the 

stronger the correlation between the variables. 

 If the variables are independent, Pearson's correlation coefficient is 0, but the 

converse is not true because the correlation coefficient detects only linear dependencies 

between two variables. For example, suppose the random variable X is symmetrically 

distributed about zero, and Y = X
2
. Then Y is completely determined by X, so that X and Y 

are perfectly dependent, but their correlation is zero; they are uncorrelated. However, in the 

special case when X and Y are jointly normal, uncorrelatedness is equivalent to 

independence. 

If we have a series of n measurements of X and Y written as xi and yi where i = 1, 2, ..., n, 

then the sample correlation coefficient can be used to estimate the population Pearson 

correlation r between X and Y. The sample correlation coefficient is written 

 

where x and y are the sample means of X and Y, and sx and sy are the sample standard 

deviations of X and Y. 
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This can also be written as: 

 

If x and y are measurements that contain measurement error, as commonly happens in 

biological systems, the realistic limits on the correlation coefficient are not -1 to +1 but a 

smaller range 

--------------------------------------------------------------------------------------------------------------- 

Linear regression 

 In statistics, linear regression is an approach to modeling the relationship between a 

scalar variable y and one or more variables denoted X. In linear regression, data are modeled 

using linear functions, and unknown model parameters are estimated from the data. Such 

models are called linear models. Most commonly, linear regression refers to a model in which 

the conditional mean of y given the value of X is an affine function of X. Less commonly, 

linear regression could refer to a model in which the median, or some other quantile of the 

conditional distribution of y given X is expressed as a linear function of X. Like all forms of 

regression analysis, linear regression focuses on the conditional probability distribution of y 

given X, rather than on the joint probability distribution of y and X, which is the domain of 

multivariate analysis. 

 Linear regression was the first type of regression analysis to be studied rigorously, 

and to be used extensively in practical applications. This is because models which depend 

linearly on their unknown parameters are easier to fit than models which are non-linearly 

related to their parameters and because the statistical properties of the resulting estimators are 

easier to determine. 

 Linear regression has many practical uses. Most applications of linear regression fall 

into one of the following two broad categories: 

 If the goal is prediction, or forecasting, linear regression can be used to fit a predictive 

model to an observed data set of y and X values. After developing such a model, if an 

additional value of X is then given without its accompanying value of y, the fitted 

model can be used to make a prediction of the value of y. 

 Given a variable y and a number of variables X1, ..., Xp that may be related to y, linear 

regression analysis can be applied to quantify the strength of the relationship between 

y and the Xj, to assess which Xj may have no relationship with y at all, and to identify 

which subsets of the Xj contain redundant information about y. 

 Linear regression models are often fitted using the least squares approach, but they 

may also be fitted in other ways, such as by minimizing the ―lack of fit‖ in some other norm 

(as with least absolute deviations regression), or by minimizing a penalized version of the 

least squares loss function as in ridge regression. Conversely, the least squares approach can 

be used to fit models that are not linear models. Thus, while the terms ―least squares‖ and 

linear model are closely linked, they are not synonymous. 
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Introduction to linear regression 

Given a data set of n statistical units, a linear regression model 

assumes that the relationship between the dependent variable yi and the p-vector of regressors 

xi is linear. This relationship is modeled through a so-called ―disturbance term‖ εi — an 

unobserved random variable that adds noise to the linear relationship between the dependent 

variable and regressors. Thus the model takes the form 

 

where ′ denotes the transpose, so that xi′β is the inner product between vectors xi and β. 

Often these n equations are stacked together and written in vector form as 

 

where 

 

Some remarks on terminology and general use: 

 is called the regressand, endogenous variable, response variable, measured 

variable, or dependent variable (see dependent and independent variables.) The 

decision as to which variable in a data set is modeled as the dependent variable and 

which are modeled as the independent variables may be based on a presumption that 

the value of one of the variables is caused by, or directly influenced by the other 

variables. Alternatively, there may be an operational reason to model one of the 

variables in terms of the others, in which case there need be no presumption of 

causality. 
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  are called regressors, exogenous variables, explanatory variables, covariates, input 

variables, predictor variables, or independent variables (see dependent and 

independent variables, but not to be confused with independent random variables). 

The matrix X is sometimes called the design matrix.  

o Usually a constant is included as one of the regressors. For example we can 

take xi1 = 1 for i = 1, ..., n. The corresponding element of β is called the 

intercept. Many statistical inference procedures for linear models require an 

intercept to be present, so it is often included even if theoretical considerations 

suggest that its value should be zero. 

o Sometimes one of the regressors can be a non-linear function of another 

regressor or of the data, as in polynomial regression and segmented regression. 

The model remains linear as long as it is linear in the parameter vector β. 

o The regressors xi may be viewed either as random variables, which we simply 

observe, or they can be considered as predetermined fixed values which we 

can choose. Both interpretations may be appropriate in different cases, and 

they generally lead to the same estimation procedures; however different 

approaches to asymptotic analysis are used in these two situations. 

 is a p-dimensional parameter vector. Its elements are also called effects, or 

regression coefficients. Statistical estimation and inference in linear regression 

focuses on β. 

 is called the error term, disturbance term, or noise. This variable captures all other 

factors which influence the dependent variable yi other than the regressors xi. The 

relationship between the error term and the regressors, for example whether they are 

correlated, is a crucial step in formulating a linear regression model, as it will 

determine the method to use for estimation. 

Example. Consider a situation where a small ball is being tossed up in the air and then we 

measure its heights of ascent hi at various moments in time ti. Physics tells us that, ignoring 

the drag, the relationship can be modeled as 

 

where β1 determines the initial velocity of the ball, β2 is proportional to the standard gravity, 

and εi is due to measurement errors. Linear regression can be used to estimate the values of β1 

and β2 from the measured data. This model is non-linear in the time variable, but it is linear in 

the parameters β1 and β2; if we take regressors xi = (xi1, xi2)  = (ti, ti
2
), the model takes on the 

standard form 

hi = x'iβ + εi. 

Assumptions 

Two key assumptions are common to all estimation methods used in linear regression 

analysis: 

 The design matrix X must have full column rank p. For this property to hold, we must 

have n > p, where n is the sample size (this is a necessary but not a sufficient 

condition). If this condition fails this is called the multicollinearity in the regressors. 

In this case the parameter vector β will be not identifiable — at most we will be able 

to narrow down its value to some linear subspace of R
p
. 

Methods for fitting linear models with multicollinearity have been developed,
[1][2][3][4]

 

but require additional assumptions such as ―effect sparsity‖ — that a large fraction of 

the effects are exactly zero. 
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A simpler statement of this is that there must be enough data available compared to 

the number of parameters to be estimated. If there is too little data, then you end up 

with a system of equations with no unique solution. See partial least squares 

regression. 

 The regressors xi are assumed to be error-free, that is they are not contaminated with 

measurement errors. Although not realistic in many settings, dropping this assumption 

leads to significantly more difficult errors-in-variables models. 

Beyond these two assumptions, several other statistical properties of the data strongly 

influence the performance of different estimation methods: 

 Some estimation methods are based on a lack of correlation, among the n observations 

. Statistical independence of the observations is 

not needed, although it can be exploited if it is known to hold. 

 The statistical relationship between the error terms and the regressors plays an 

important role in determining whether an estimation procedure has desirable sampling 

properties such as being unbiased and consistent. 

 The variances of the error terms may be equal across the n units (termed 

homoscedasticity) or not (termed heteroscedasticity). Some linear regression 

estimation methods give less precise parameter estimates and misleading inferential 

quantities such as standard errors when substantial heteroscedasticity is present. 

 The arrangement, or probability distribution of the predictor variables x has a major 

influence on the precision of estimates of β. Sampling and design of experiments are 

highly-developed subfields of statistics that provide guidance for collecting data in 

such a way to achieve a precise estimate of β. 

Interpretation 

 

 

The sets in the Anscombe's quartet have the same linear regression line but are themselves 

very different. 
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 A fitted linear regression model can be used to identify the relationship between a 

single predictor variable xj and the response variable y when all the other predictor variables 

in the model are ―held fixed‖. Specifically, the interpretation of βj is the expected change in y 

for a one-unit change in xj when the other covariates are held fixed. This is sometimes called 

the unique effect of xj on y. In contrast, the marginal effect of xj on y can be assessed using a 

correlation coefficient or simple linear regression model relating xj to y. 

 Care must be taken when interpreting regression results, as some of the regressors 

may not allow for marginal changes (such as dummy variables, or the intercept term), while 

others cannot be held fixed (recall the example from the introduction: it would be impossible 

to ―hold ti fixed‖ and at the same time change the value of ti
2
). 

 It is possible that the unique effect can be nearly zero even when the marginal effect is 

large. This may imply that some other covariate captures all the information in xj, so that 

once that variable is in the model, there is no contribution of xj to the variation in y. 

Conversely, the unique effect of xj can be large while its marginal effect is nearly zero. This 

would happen if the other covariates explained a great deal of the variation of y, but they 

mainly explain variation in a way that is complementary to what is captured by xj. In this 

case, including the other variables in the model reduces the part of the variability of y that is 

unrelated to xj, thereby strengthening the apparent relationship with xj. 

 The meaning of the expression ―held fixed‖ may depend on how the values of the 

predictor variables arise. If the experimenter directly sets the values of the predictor variables 

according to a study design, the comparisons of interest may literally correspond to 

comparisons among units whose predictor variables have been ―held fixed‖ by the 

experimenter. Alternatively, the expression ―held fixed‖ can refer to a selection that takes 

place in the context of data analysis. In this case, we ―hold a variable fixed‖ by restricting our 

attention to the subsets of the data that happen to have a common value for the given 

predictor variable. This is the only interpretation of ―held fixed‖ that can be used in an 

observational study. 

 The notion of a ―unique effect‖ is appealing when studying a complex system where 

multiple interrelated components influence the response variable. In some cases, it can 

literally be interpreted as the causal effect of an intervention that is linked to the value of a 

predictor variable. However, it has been argued that in many cases multiple regression 

analysis fails to clarify the relationships between the predictor variables and the response 

variable when the predictors are correlated with each other and are not assigned following a 

study design.
[5]

 

Estimation methods 
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Comparison of the Theil–Sen estimator (black) and simple linear regression (blue) for a set of 

points with outliers. 

 Numerous procedures have been developed for parameter estimation and inference in 

linear regression. These methods differ in computational simplicity of algorithms, presence of 

a closed-form solution, robustness with respect to heavy-tailed distributions, and theoretical 

assumptions needed to validate desirable statistical properties such as consistency and 

asymptotic efficiency. 

Some of the more common estimation techniques for linear regression are summarized 

below. 

 Ordinary least squares (OLS) is the simplest and thus most common estimator. It is 

conceptually simple and computationally straightforward. OLS estimates are 

commonly used to analyze both experimental and observational data. 

The OLS method minimizes the sum of squared residuals, and leads to a closed-form 

expression for the estimated value of the unknown parameter β:  

 

The estimator is unbiased and consistent if the errors have finite variance and are 

uncorrelated with the regressors
[6]

  

 

 It is also efficient under the assumption that the errors have finite variance and 

are homoscedastic, meaning that E[εi
2
|xi] does not depend on i. The condition that the 

errors are uncorrelated with the regressors will generally be satisfied in an 

experiment, but in the case of observational data, it is difficult to exclude the 

possibility of an omitted covariate z that is related to both the observed covariates and 

the response variable. The existence of such a covariate will generally lead to a 

correlation between the regressors and the response variable, and hence to an 

inconsistent estimator of β. The condition of homoscedasticity can fail with either 

experimental or observational data. If the goal is either inference or predictive 

modeling, the performance of OLS estimates can be poor if multicollinearity is 

present, unless the sample size is large. 

In simple linear regression, where there is only one regressor (with a constant), the 

OLS coefficient estimates have a simple form that is closely related to the correlation 

coefficient between the covariate and the response. 

 

================================================================== 
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ANOVA (Analysis of variance) 

 The Analysis Of Variance, popularly known as the ANOVA test, can be used in cases 

where there are more than two groups. 

 When we have only two samples we can use the t-test to compare the means of the 

samples but it might become unreliable in case of more than two samples. If we only 

compare two means, then the t-test (independent samples) will give the same results as the 

ANOVA. 

 It is used to compare the means of more than two samples. This can be understood 

better with the help of an example.  

ONE WAY ANOVA 

 

EXAMPLE: Suppose we want to test the effect of five different exercises. For this, we recruit 

20 men and assign one type of exercise to 4 men (5 groups). Their weights are recorded after 

a few weeks. 

 We may find out whether the effect of these exercises on them is significantly 

different or not and this may be done by comparing the weights of the 5 groups of 4 men 

each. 

The example above is a case of one-way balanced ANOVA. 

 It has been termed as one-way as there is only one category whose effect has been 

studied and balanced as the same number of men has been assigned on each exercise. Thus 

the basic idea is to test whether the samples are all alike or not.  

WHY NOT MULTIPLE T-TESTS? 

 

 As mentioned above, the t-test can only be used to test differences between two 

means. When there are more than two means, it is possible to compare each mean with each 

other mean using many t-tests. 

 But conducting such multiple t-tests can lead to severe complications and in such 

circumstances we use ANOVA. Thus, this technique is used whenever an alternative 

procedure is needed for testing hypotheses concerning means when there are several 

populations.  

ONE WAY AND TWO WAY ANOVA 

 

 Now some questions may arise as to what are the means we are talking about and why 

variances are analyzed in order to derive conclusions about means. The whole procedure can 

be made clear with the help of an experiment. 

 Let us study the effect of fertilizers on yield of wheat. We apply five fertilizers, each 

of different quality, on four plots of land each of wheat. The yield from each plot of land is 
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recorded and the difference in yield among the plots is observed. Here, fertilizer is a factor 

and the different qualities of fertilizers are called levels. 

 This is a case of one-way or one-factor ANOVA since there is only one factor, 

fertilizer. We may also be interested to study the effect of fertility of the plots of land. In such 

a case we would have two factors, fertilizer and fertility. This would be a case of two-way or 

two-factor ANOVA. Similarly, a third factor may be incorporated to have a case of three-way 

or three-factor ANOVA.  

CHANCE CAUSE AND ASSIGNABLE CAUSE 

 

 In the above experiment the yields obtained from the plots may be different and we 

may be tempted to conclude that the differences exist due to the differences in quality of the 

fertilizers. 

 But this difference may also be the result of certain other factors which are attributed 

to chance and which are beyond human control. This factor is termed as ―error‖. Thus, the 

differences or variations that exist within a plot of land may be attributed to error.  

 Thus, estimates of the amount of variation due to assignable causes (or variance 

between the samples) as well as due to chance causes (or variance within the samples) are 

obtained separately and compared using an F-test and conclusions are drawn using the value 

of F.  

ASSUMPTIONS 

There are four basic assumptions used in ANOVA.  

 the expected values of the errors are zero 

 the variances of all errors are equal to each other 

 the errors are independent 

 they are normally distributed 

 

 In statistics, analysis of variance (ANOVA) is a collection of statistical models, and 

their associated procedures, in which the observed variance in a particular variable is 

partitioned into components attributable to different sources of variation. In its simplest form 

ANOVA provides a statistical test of whether or not the means of several groups are all 

equal, and therefore generalizes t-test to more than two groups. Doing multiple two-sample t-

tests would result in an increased chance of committing a type I error. For this reason, 

ANOVAs are useful in comparing two, three or more means. 

Models 

There are three classes of models used in the analysis of variance, and these are outlined here. 

Fixed-effects models (Model 1) 

 The fixed-effects model of analysis of variance applies to situations in which the 

experimenter applies one or more treatments to the subjects of the experiment to see if the 
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response variable values change. This allows the experimenter to estimate the ranges of 

response variable values that the treatment would generate in the population as a whole. 

Random-effects models (Model 2) 

 Random effects models are used when the treatments are not fixed. This occurs when 

the various factor levels are sampled from a larger population. Because the levels themselves 

are random variables, some assumptions and the method of contrasting the treatments differ 

from ANOVA model 1. 

Mixed-effects models (Model 3) 

 A mixed-effects model contains experimental factors of both fixed and random-

effects types, with appropriately different interpretations and analysis for the two types. 
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